M1. (a) **C** 1 cytoplasm and cell membrane dividing (b) accept cytokinesis for 1 mark 1 to form two identical daughter cells 1 (c) stage 4 1 only one cell seen in this stage 1 (d) $(4/36) \times 16 \times 60$ 1 107 / 106.7 1 110 (minutes) allow 110 (minutes) with no working shown for 3 marks 1

1

do not accept mitosis

binary fission

(e)

(f) shortage of nutrients / oxygen

1

so cells die

or

death rate = rate of cell division

[11]

И2.	(a)	A = meiosis accept 'mieosis'		
		do not accept 'miosis'	1	
		B = mitosis		
		do not accept 'meitosis' etc	1	
	(b)	fertilisation allow conception		
	()	() 00	1	
	(c)	(i) 23	1	
		(ii) 46	1	
				[5]

M3. any **four** from:

- cells used to treat diseases do not go on to produce a baby
- · produces identical cells for research
- cells would not be rejected
- allow cells can form different types of cells
- (immature) egg contains only genetic information / DNA / genes / chromosomes from mother **or** there is only one parent
- asexual / no mixing of genetic material / no sperm involved / no fertilisation or chemical causes development
- baby is a clone
- reference to ethical / moral / religious issues
 allow ethically wrong
 NB cloning is illegal gains 2 marks
 ignore unnatural
- risk of damage to the baby in correct context

[4]

M4. one mark for each of the following comparisons to a maximum of **6**

candidates **must** make a clear comparison

meiosis	mitosis
sexual	asexual
gametes	growth
ovary or testes or gonads	all other cells
half number of chromsomes	same number of chromosomes
haploid or 23 chromosomes	diploid or 46 chromosomes
reassortment or variation possible or not identical	no reassortment or no variation or identical
4 cells produced	2 cells produced
2 divisions	1 division

[6]

M5. (a) any one from chromosomes in pairs inherited one of each pair from each parent one of each pair in egg and one of each pair in sperm so sex cells / gametes can have half the number allow need to pair during cell division / meiosis 1 any **two** from: (b) <u>code</u> combination / sequence of amino acids forming specific / particular proteins / examples If no other mark gained allow reference to controlling characteristics / appearance for 1 mark 2 С (i) (c) 1 (ii) 30 1 (d) (i) for growth / repair / replacement / asexual reproduction do not accept incorrect qualification, eg growth of cells or repair of cells they equals cells therefore do not accept they grow etc 1

1

44 **or** 22 pairs

(ii)

M6. Marks should **not** be awarded for simply copying the information provided A mark may be awarded for a <u>comparison</u> between treatments if the answer only involves copied information

any four from:

For all **4** marks to be awarded, there must be at least 1 pro and 1 con

embryo stem cells - examples of

pros

- can treat a wide variety / lots of diseases / problems
- many available / plentiful
- using them better than wasting them
- painless

cons

- (possible) harm / death to embryo
- (relatively) untested / unreliable / may not work
 allow long term effects not known
 or may be more risky
- embryo can't be 'asked' / 'embryo rights' idea

adult bone marrow stem cells - examples of

pros

- no ethical issues (in collection) **or** permission given
- quick recovery
- (relatively) safe
 allow does not kill (donor) / low risk
- well tried / tested / know they work

cons

- operation hazards eg infection
- few types of cell / tissue produced **or** few diseases / problems treated
- painful so may deter donors

Conclusion to evaluation:

A reasoned conclusion from the evidence

[5]

1

M7.	(a)	(i)	DNA replication / copies of genetic material were made 'it' = a chromosome allow chromosomes replicate / duplicate / are copied ignore chromosomes divide / split / double	1
		(ii)	one copy of each (chromosome / chromatid / strand) to each offspring cell ignore ref. to gametes and fertilisation	1
			each offspring cell receives a complete set of / the same genetic material allow 'so offspring (cells) are identical'	1
	(b)	(i)	meiosis allow mieosis as the only alternative spelling	1
		(ii)	Species A = 4 and Species B = 8	1
		(iii)	sum of A + B from (b)(ii) e.g. 12	1
	(c)	(i)	similarities between chromosomes or similarities between flowers described e.g. shape of petals / pattern on petals / colour / stamens	1
			can breed / can sexually reproduce allow can reproduce with each other / they can produce offspring	1

(ii) any **two** from:

- offspring contain 3 copies of each gene / of each chromosome / odd number of each of the chromosomes
- some chromosomes unable to pair (in meiosis)
- (viable) gametes not formed / some gametes with extra / too many genes / chromosomes

orsome gametes with missing genes / chromosomes

[10]

М8.	(a) of al	(i) allele expressed even when other allele present or expressed if just one copylele is present or expressed if heterozygous if present other allele not expressed	y 1
		(ii) $\underline{2}$ affected <u>parents</u> have unaffected child or 1 and $\underline{2} \to \underline{5} / \underline{6}$ or if recessive all of 1 and 2 's children would have CADASIL	1
		(iii) heterozygous – has unaffected children or because if homozygous all children would have CADASIL	1
	(b)	genetic diagram including: accept alternative symbols, if defined	1
		correct gametes: D and d and d (and d) ignore 7 / 8 or male / female	1
		derivation of offspring genotypes: Dd Dd dd dd allow just Dd dd if ½-diagram	
		identification of Dd as CADASILor dd as unaffected allow ecf if correct for student's gametes	1
		correct probability: 0.5 / ½ / 1 in 2 / 50% / 1 : 1	1

(c) stem cells can differentiate or are undifferentiated / unspecialised (i) 1 can form blood vessel cells / brain cells or stem cells can divide 1 (ii) ethical argument - eg no risk of damage to embryo or adult can give consent for removal of cells or adult can re-grow skin more ethical qualified ignore religion unqualified orif from a relative then less chance of rejection or if from self then no chance of rejection or skin cells more accessible [10]